Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.2 Angle Position and Arc Length (TR2)
Objectives
Identify and find coterminal angles. Find the length of a circular arc.
Subsection 6.2.1 Activities
Activity 6.2.1 .
Consider the angle given below:
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Which of the following angles describe the plotted angle?
\(\displaystyle -45^\circ\)
\(\displaystyle -135^\circ\)
\(\displaystyle -225^\circ\)
\(\displaystyle -315^\circ\)
Definition 6.2.2 .
Two angles are called
coterminal angles if they have the same terminal side when drawn in standard position.
Activity 6.2.3 .
Consider the angle given below:
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Find two angles larger than
\(60^\circ\) that are coterminal to
\(60^\circ\text{.}\)
Answer .
\(420^\circ\text{,}\) \(780^\circ\text{,}\) among others.
(b)
Find two angles smaller than
\(60^\circ\) that are coterminal to
\(60^\circ\text{.}\)
Answer .
\(-300^\circ\text{,}\) \(-660^\circ\text{,}\) among others.
Definition 6.2.6 .
If
\(\theta\) is an angle, there is a unique angle
\(\alpha\) with
\(0 \leq \alpha \lt 360^\circ\) (or
\(0\leq \alpha \lt 2\pi\) ) such that
\(\alpha\) and
\(\theta\) are coterminal. This angle
\(\alpha\) is called the
principal angle of
\(\theta\text{.}\)
Activity 6.2.7 .
Find the principal angles for each of the following angles.
(a)
(b)
(c)
(d)
Activity 6.2.9 .
Consider the portion of a circle of radius
\(1\) graphed below.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
What is the circumference of an entire circle of radius
\(1\text{?}\)
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
\(\displaystyle \frac{1}{2}\)
\(\displaystyle \frac{3}{4}\)
(c)
Use proportions to determine the length of the arc displayed above.
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
Activity 6.2.10 .
Consider the portion of a circle of radius
\(3\) graphed below.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
What is the circumference of an entire circle of radius
\(3\text{?}\)
\(\displaystyle \pi\)
\(\displaystyle 3\pi\)
\(\displaystyle 6\pi\)
\(\displaystyle 9\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{12}\)
\(\displaystyle \frac{1}{6}\)
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
(c)
Use proportions to determine the length of the arc displayed above.
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle 2\pi\)
\(\displaystyle 3\pi\)
Activity 6.2.12 .
Find the lengths of the arcs described below.
(a)
The length of the arc of a sector of measure
\(120^\circ\) of a circle of radius
\(4\text{.}\)
(b)
The length of the arc of a sector of measure
\(270^\circ\) of a circle of radius
\(2\text{.}\)
(c)
The length of the arc of a sector of measure
\(\dfrac{5\pi}{6}\) of a circle of radius
\(3\text{.}\)
(d)
The length of the arc of a sector of measure
\(\dfrac{11\pi}{12}\) of a circle of radius
\(6\text{.}\)
Activity 6.2.14 .
Consider the portion of a circle of radius
\(1\) graphed below.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
What is the area of an entire circle of radius
\(1\text{?}\)
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
\(\displaystyle \frac{1}{2}\)
\(\displaystyle \frac{3}{4}\)
(c)
Use proportions to determine the area of the arc displayed above.
\(\displaystyle \frac{\pi}{4}\)
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
Activity 6.2.15 .
Consider the portion of a circle of radius
\(3\) graphed below.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
What is the area of an entire circle of radius
\(3\text{?}\)
\(\displaystyle \pi\)
\(\displaystyle 3\pi\)
\(\displaystyle 6\pi\)
\(\displaystyle 9\pi\)
(b)
What portion of the entire circle is the sector graphed above?
\(\displaystyle \frac{1}{12}\)
\(\displaystyle \frac{1}{6}\)
\(\displaystyle \frac{1}{4}\)
\(\displaystyle \frac{1}{3}\)
(c)
Use proportions to determine the area of the sector displayed above.
\(\displaystyle \frac{\pi}{2}\)
\(\displaystyle \pi\)
\(\displaystyle \frac{3\pi}{2}\)
\(\displaystyle 2\pi\)
Activity 6.2.17 .
Find the areas of each sector described below.
(a)
The sector with central angle
\(120^\circ\) in a circle of radius
\(4\text{.}\)
(b)
The sector with central angle
\(270^\circ\) in a circle of radius
\(2\text{.}\)
(c)
The sector with central angle
\(\dfrac{5\pi}{6}\) in a circle of radius
\(3\text{.}\)
(d)
The sector with central angle
\(\dfrac{11\pi}{12}\) in a circle of radius
\(6\text{.}\)
Subsection 6.2.2 Exercises